Enter a problem...
Linear Algebra Examples
Step 1
Step 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Step 1.2
Multiply each row in the first matrix by each column in the second matrix.
Step 1.3
Simplify each element of the matrix by multiplying out all the expressions.
Step 2
The matrix equation can be written as a set of equations.
Step 3
Step 3.1
Subtract from both sides of the equation.
Step 3.2
Subtract from both sides of the equation.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the distributive property.
Step 4.2.1.1.2
Simplify.
Step 4.2.1.1.2.1
Multiply by .
Step 4.2.1.1.2.2
Multiply by .
Step 4.2.1.1.2.3
Multiply by .
Step 4.2.1.2
Add and .
Step 4.3
Replace all occurrences of in with .
Step 4.4
Simplify the left side.
Step 4.4.1
Simplify each term.
Step 4.4.1.1
Apply the distributive property.
Step 4.4.1.2
Simplify.
Step 4.4.1.2.1
Multiply by .
Step 4.4.1.2.2
Multiply by .
Step 4.4.1.2.3
Multiply by .
Step 5
Step 5.1
Move all terms not containing to the right side of the equation.
Step 5.1.1
Subtract from both sides of the equation.
Step 5.1.2
Add to both sides of the equation.
Step 5.1.3
Add to both sides of the equation.
Step 5.2
Divide each term in by and simplify.
Step 5.2.1
Divide each term in by .
Step 5.2.2
Simplify the left side.
Step 5.2.2.1
Cancel the common factor of .
Step 5.2.2.1.1
Cancel the common factor.
Step 5.2.2.1.2
Rewrite the expression.
Step 5.2.2.2
Cancel the common factor of .
Step 5.2.2.2.1
Cancel the common factor.
Step 5.2.2.2.2
Divide by .
Step 5.2.3
Simplify the right side.
Step 5.2.3.1
Simplify each term.
Step 5.2.3.1.1
Cancel the common factor of and .
Step 5.2.3.1.1.1
Factor out of .
Step 5.2.3.1.1.2
Cancel the common factors.
Step 5.2.3.1.1.2.1
Factor out of .
Step 5.2.3.1.1.2.2
Cancel the common factor.
Step 5.2.3.1.1.2.3
Rewrite the expression.
Step 5.2.3.1.2
Cancel the common factor of .
Step 5.2.3.1.2.1
Cancel the common factor.
Step 5.2.3.1.2.2
Divide by .
Step 5.2.3.1.3
Cancel the common factor of and .
Step 5.2.3.1.3.1
Factor out of .
Step 5.2.3.1.3.2
Cancel the common factors.
Step 5.2.3.1.3.2.1
Factor out of .
Step 5.2.3.1.3.2.2
Cancel the common factor.
Step 5.2.3.1.3.2.3
Rewrite the expression.
Step 5.2.3.1.4
Cancel the common factor of .
Step 5.2.3.1.4.1
Cancel the common factor.
Step 5.2.3.1.4.2
Rewrite the expression.
Step 5.2.3.1.4.3
Move the negative one from the denominator of .
Step 5.2.3.1.5
Rewrite as .
Step 5.2.3.1.6
Cancel the common factor of and .
Step 5.2.3.1.6.1
Factor out of .
Step 5.2.3.1.6.2
Cancel the common factors.
Step 5.2.3.1.6.2.1
Factor out of .
Step 5.2.3.1.6.2.2
Cancel the common factor.
Step 5.2.3.1.6.2.3
Rewrite the expression.
Step 5.2.3.1.7
Move the negative in front of the fraction.
Step 5.2.3.1.8
Multiply by .
Step 5.2.3.1.9
Combine and simplify the denominator.
Step 5.2.3.1.9.1
Multiply by .
Step 5.2.3.1.9.2
Move .
Step 5.2.3.1.9.3
Raise to the power of .
Step 5.2.3.1.9.4
Raise to the power of .
Step 5.2.3.1.9.5
Use the power rule to combine exponents.
Step 5.2.3.1.9.6
Add and .
Step 5.2.3.1.9.7
Rewrite as .
Step 5.2.3.1.9.7.1
Use to rewrite as .
Step 5.2.3.1.9.7.2
Apply the power rule and multiply exponents, .
Step 5.2.3.1.9.7.3
Combine and .
Step 5.2.3.1.9.7.4
Cancel the common factor of .
Step 5.2.3.1.9.7.4.1
Cancel the common factor.
Step 5.2.3.1.9.7.4.2
Rewrite the expression.
Step 5.2.3.1.9.7.5
Evaluate the exponent.
Step 5.2.3.1.10
Multiply by .
Step 6
Step 6.1
Replace all occurrences of in with .
Step 6.2
Simplify the left side.
Step 6.2.1
Simplify .
Step 6.2.1.1
Simplify each term.
Step 6.2.1.1.1
Apply the distributive property.
Step 6.2.1.1.2
Simplify.
Step 6.2.1.1.2.1
Multiply by .
Step 6.2.1.1.2.2
Multiply by .
Step 6.2.1.1.2.3
Cancel the common factor of .
Step 6.2.1.1.2.3.1
Move the leading negative in into the numerator.
Step 6.2.1.1.2.3.2
Cancel the common factor.
Step 6.2.1.1.2.3.3
Rewrite the expression.
Step 6.2.1.2
Simplify by adding terms.
Step 6.2.1.2.1
Add and .
Step 6.2.1.2.2
Subtract from .
Step 6.3
Replace all occurrences of in with .
Step 6.4
Simplify the right side.
Step 6.4.1
Simplify .
Step 6.4.1.1
Simplify each term.
Step 6.4.1.1.1
Apply the distributive property.
Step 6.4.1.1.2
Simplify.
Step 6.4.1.1.2.1
Multiply by .
Step 6.4.1.1.2.2
Multiply .
Step 6.4.1.1.2.2.1
Multiply by .
Step 6.4.1.1.2.2.2
Multiply by .
Step 6.4.1.1.2.3
Multiply .
Step 6.4.1.1.2.3.1
Multiply by .
Step 6.4.1.1.2.3.2
Multiply by .
Step 6.4.1.2
Combine the opposite terms in .
Step 6.4.1.2.1
Subtract from .
Step 6.4.1.2.2
Subtract from .
Step 6.4.1.2.3
Add and .
Step 6.4.1.2.4
Add and .
Step 7
Step 7.1
Move all terms not containing to the right side of the equation.
Step 7.1.1
Subtract from both sides of the equation.
Step 7.1.2
Subtract from .
Step 7.2
Factor out of .
Step 7.2.1
Factor out of .
Step 7.2.2
Factor out of .
Step 7.2.3
Factor out of .
Step 7.3
Divide each term in by and simplify.
Step 7.3.1
Divide each term in by .
Step 7.3.2
Simplify the left side.
Step 7.3.2.1
Cancel the common factor of and .
Step 7.3.2.1.1
Factor out of .
Step 7.3.2.1.2
Rewrite as .
Step 7.3.2.1.3
Factor out of .
Step 7.3.2.1.4
Cancel the common factor.
Step 7.3.2.1.5
Divide by .
Step 7.3.2.2
Multiply .
Step 7.3.2.2.1
Multiply by .
Step 7.3.2.2.2
Multiply by .
Step 7.3.3
Simplify the right side.
Step 7.3.3.1
Move the negative in front of the fraction.
Step 7.3.3.2
Multiply by .
Step 7.3.3.3
Multiply by .
Step 7.3.3.4
Expand the denominator using the FOIL method.
Step 7.3.3.5
Simplify.
Step 7.3.3.6
Move the negative in front of the fraction.
Step 7.3.3.7
Multiply .
Step 7.3.3.7.1
Multiply by .
Step 7.3.3.7.2
Multiply by .
Step 7.3.3.8
Factor out of .
Step 7.3.3.9
Rewrite as .
Step 7.3.3.10
Factor out of .
Step 7.3.3.11
Simplify the expression.
Step 7.3.3.11.1
Rewrite as .
Step 7.3.3.11.2
Move the negative in front of the fraction.
Step 8
Step 8.1
Replace all occurrences of in with .
Step 8.2
Simplify the right side.
Step 8.2.1
Simplify .
Step 8.2.1.1
Combine and .
Step 8.2.1.2
Simplify the numerator.
Step 8.2.1.2.1
Group and together.
Step 8.2.1.2.2
Apply the distributive property.
Step 8.2.1.2.3
Combine using the product rule for radicals.
Step 8.2.1.2.4
Simplify each term.
Step 8.2.1.2.4.1
Multiply by .
Step 8.2.1.2.4.2
Rewrite as .
Step 8.2.1.2.4.3
Pull terms out from under the radical, assuming positive real numbers.
Step 8.2.1.2.5
Move to the left of .
Step 8.2.1.3
Simplify the numerator.
Step 8.2.1.3.1
Apply the distributive property.
Step 8.2.1.3.2
Multiply by .
Step 8.2.1.3.3
Multiply by .
Step 8.2.1.4
Multiply the numerator by the reciprocal of the denominator.
Step 8.2.1.5
Multiply .
Step 8.2.1.5.1
Multiply by .
Step 8.2.1.5.2
Multiply by .
Step 8.2.1.6
Cancel the common factor of and .
Step 8.2.1.6.1
Factor out of .
Step 8.2.1.6.2
Factor out of .
Step 8.2.1.6.3
Factor out of .
Step 8.2.1.6.4
Cancel the common factors.
Step 8.2.1.6.4.1
Factor out of .
Step 8.2.1.6.4.2
Cancel the common factor.
Step 8.2.1.6.4.3
Rewrite the expression.
Step 8.3
Replace all occurrences of in with .
Step 8.4
Simplify the right side.
Step 8.4.1
Simplify .
Step 8.4.1.1
Simplify each term.
Step 8.4.1.1.1
Multiply .
Step 8.4.1.1.1.1
Multiply by .
Step 8.4.1.1.1.2
Multiply by .
Step 8.4.1.1.2
Combine and .
Step 8.4.1.1.3
Simplify the numerator.
Step 8.4.1.1.3.1
Group and together.
Step 8.4.1.1.3.2
Apply the distributive property.
Step 8.4.1.1.3.3
Combine using the product rule for radicals.
Step 8.4.1.1.3.4
Simplify each term.
Step 8.4.1.1.3.4.1
Multiply by .
Step 8.4.1.1.3.4.2
Rewrite as .
Step 8.4.1.1.3.4.3
Pull terms out from under the radical, assuming positive real numbers.
Step 8.4.1.1.3.5
Move to the left of .
Step 8.4.1.1.4
Simplify the numerator.
Step 8.4.1.1.4.1
Apply the distributive property.
Step 8.4.1.1.4.2
Multiply by .
Step 8.4.1.1.4.3
Multiply by .
Step 8.4.1.1.5
Multiply the numerator by the reciprocal of the denominator.
Step 8.4.1.1.6
Multiply .
Step 8.4.1.1.6.1
Multiply by .
Step 8.4.1.1.6.2
Multiply by .
Step 8.4.1.1.7
Cancel the common factor of and .
Step 8.4.1.1.7.1
Factor out of .
Step 8.4.1.1.7.2
Factor out of .
Step 8.4.1.1.7.3
Factor out of .
Step 8.4.1.1.7.4
Cancel the common factors.
Step 8.4.1.1.7.4.1
Factor out of .
Step 8.4.1.1.7.4.2
Cancel the common factor.
Step 8.4.1.1.7.4.3
Rewrite the expression.
Step 8.4.1.1.8
Multiply .
Step 8.4.1.1.8.1
Multiply by .
Step 8.4.1.1.8.2
Multiply by .
Step 8.4.1.2
Combine the numerators over the common denominator.
Step 8.4.1.3
Simplify each term.
Step 8.4.1.3.1
Apply the distributive property.
Step 8.4.1.3.2
Multiply by .
Step 8.4.1.4
Simplify by adding terms.
Step 8.4.1.4.1
Subtract from .
Step 8.4.1.4.2
Add and .
Step 8.4.1.5
To write as a fraction with a common denominator, multiply by .
Step 8.4.1.6
Combine fractions.
Step 8.4.1.6.1
Combine and .
Step 8.4.1.6.2
Combine the numerators over the common denominator.
Step 8.4.1.7
Simplify the numerator.
Step 8.4.1.7.1
Multiply by .
Step 8.4.1.7.2
Subtract from .
Step 9
List all of the solutions.